(0) Obligation:

Clauses:

list([]) :- !.
list(X) :- ','(tail(X, T), list(T)).
tail([], []).
tail(.(X, Xs), Xs).

Query: list(g)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

listA([]).
listA(.(T8, T9)) :- listA(T9).

Query: listA(g)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
listA_in: (b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

listA_in_g([]) → listA_out_g([])
listA_in_g(.(T8, T9)) → U1_g(T8, T9, listA_in_g(T9))
U1_g(T8, T9, listA_out_g(T9)) → listA_out_g(.(T8, T9))

The argument filtering Pi contains the following mapping:
listA_in_g(x1)  =  listA_in_g(x1)
[]  =  []
listA_out_g(x1)  =  listA_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3)  =  U1_g(x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

listA_in_g([]) → listA_out_g([])
listA_in_g(.(T8, T9)) → U1_g(T8, T9, listA_in_g(T9))
U1_g(T8, T9, listA_out_g(T9)) → listA_out_g(.(T8, T9))

The argument filtering Pi contains the following mapping:
listA_in_g(x1)  =  listA_in_g(x1)
[]  =  []
listA_out_g(x1)  =  listA_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3)  =  U1_g(x3)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

LISTA_IN_G(.(T8, T9)) → U1_G(T8, T9, listA_in_g(T9))
LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)

The TRS R consists of the following rules:

listA_in_g([]) → listA_out_g([])
listA_in_g(.(T8, T9)) → U1_g(T8, T9, listA_in_g(T9))
U1_g(T8, T9, listA_out_g(T9)) → listA_out_g(.(T8, T9))

The argument filtering Pi contains the following mapping:
listA_in_g(x1)  =  listA_in_g(x1)
[]  =  []
listA_out_g(x1)  =  listA_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3)  =  U1_g(x3)
LISTA_IN_G(x1)  =  LISTA_IN_G(x1)
U1_G(x1, x2, x3)  =  U1_G(x3)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LISTA_IN_G(.(T8, T9)) → U1_G(T8, T9, listA_in_g(T9))
LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)

The TRS R consists of the following rules:

listA_in_g([]) → listA_out_g([])
listA_in_g(.(T8, T9)) → U1_g(T8, T9, listA_in_g(T9))
U1_g(T8, T9, listA_out_g(T9)) → listA_out_g(.(T8, T9))

The argument filtering Pi contains the following mapping:
listA_in_g(x1)  =  listA_in_g(x1)
[]  =  []
listA_out_g(x1)  =  listA_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3)  =  U1_g(x3)
LISTA_IN_G(x1)  =  LISTA_IN_G(x1)
U1_G(x1, x2, x3)  =  U1_G(x3)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)

The TRS R consists of the following rules:

listA_in_g([]) → listA_out_g([])
listA_in_g(.(T8, T9)) → U1_g(T8, T9, listA_in_g(T9))
U1_g(T8, T9, listA_out_g(T9)) → listA_out_g(.(T8, T9))

The argument filtering Pi contains the following mapping:
listA_in_g(x1)  =  listA_in_g(x1)
[]  =  []
listA_out_g(x1)  =  listA_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3)  =  U1_g(x3)
LISTA_IN_G(x1)  =  LISTA_IN_G(x1)

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)
    The graph contains the following edges 1 > 1

(14) YES